

AVX BME X7R Capacitors for Space

October 2016 John Marshall, Technical Manager Michael Conway, Product Manager AVX Ltd. - Ceramics Division Hillman's Way, Coleraine, N Ireland, UK Email: michael.conway@eur.avx.com Phone +44 28 7034 0672

http://www.avx.com

QPL BME Capacitors for Space/Mil Applications

Contents

- BME Capacitors for Space / Military Reliability and Performance data.
- Space grade BME Capacitor Structure and Micro-sectional analysis
- BME planned developments and opportunities
- Conclusion

Space / Military – Reliability and Performance data

Space and Military Grade BME QPL parts

- Select Hi CV materials with a proven quality reliability heritage in field performance (Normally >= 5 years history required)
- Conservative designs no changes allowed once qualified/approved
- Stable electrical parameters (ESR, VC, TC, VBD etc)
- *Controlled Material and Process* restricted by ESCC PID controls
- External qualification requirements ESCC, NASA, Mil approvals needed plus Audit systems
- 100% Acoustic Microscopy Inspection
- o 100% Burn In with defined failure levels
- Lot C of C/Data packs

Space Electrical Characteristics Data Stable as Material and Design rules are defined in PID

A KYOCEFA GROUP COMPANY http://www.avx.com

Long Term Standard Life Testing 10,000hrs for Aerospace Corp.

	Life	Life Testing 2 x Rated Voltage @ 125 Deg C . Sample Size 125 pcs											
AVX Part	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000	10,000			
number	Hrs	Hrs	Hrs	Hrs	Hrs	Hrs	Hrs	Hrs	Hrs	Hrs			
18123C825K	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS			
06033C184K	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS			
12105C105K	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS			
12065C105K	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS			
08051C104K	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS			
18121C225K	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS			

Long Term Life 10,000 hr Parametric Data 1812 100V 2.2uF

Probability Plot of 18121C225KECQQT IR after 1,000 - 10,000 hrs test

Probability Plot of 18121C225KECQQT Cap after 1,000 - 10,000 hrs test

DPA section Space BME 1812 100v 2.2uF

A KYOCERA GROUP COMPANY http://www.avx.com

High Acceleration Life Testing, HALT

 A number of BME part numbers have been tested on a HALT system to calculate the field life time by determining the Voltage exponent, N, and the Energy of Activation, Ea.

Part Number	Conditions		
12065C105	270 Volts 150 Deg C	285 Volts 150 Deg C	290 Volts 150 Deg C
12065C105	250 Volts 150 Deg C	250 Volts 155 Deg C	250 Volts 165 Deg C
12105C105	365 Volts 150 Deg C	370 Volts 150 Deg C	380 Volts 150 Deg C
12105C105	350 Volts 150 Deg C	350 Volts 155 Deg C	350 Volts 165 Deg C

Acceleration Factors

The acceleration model used was the Propokowice and Vaskas, P - V model

Part number	Voltage Exponent	Energy of activation	MTTF (Yrs) 85 Deg C 1 x RV	MTTF (Yrs) 85 Deg C 0.5 x RV	MTTF (Yrs) 125 Deg C 0.5 x RV
12105C105	8.17	1.17	4.40E+06	1.27E+09	2.79E+07

http://www.avx.com

HALT WEIBULL PLOTS

Life testing at increased sample size and test voltage 3 X RV. Large sample size, Military and Space typically would be 40-120 pcs per part #

	Canacitance	Rated Voltage	Fired Dielectric Thickness	Pcs on	Life Test	Life Test at <u>3X</u> , 125°C				
Part #	(uF)	(Vdc)	(microns)	Life Test	(Vdc)	250 hrs	500 hrs	1,000 hrs		
06033C184	0.18	25	6.0 - 6.5	500	75	0 / 500	0 / 500	0 / 500		
18123C825	8.2	25	6.5 - 7.5	500	75	0 / 500	0 / 500	0 / 500		

Accelerated 125°C Life Testing done at 3X rated, rather than Military and Space standard of 2X

Reliability on Space Level BME @ 3 x rated voltage to 1000hrs "Insulation Resistance" parametric data

1812 8.2uF - no IR degradation seen after 1000hrs at 3X rated, 125°C Life Testing 0603 180nF - no IR degradation seen after 1000hrs at 3X rated, 125°C Life Testing

Space and Military High Reliability Screening Systems BME and PME Screening

100% Sonoscan

100% Burn In

ESA, NASA &

Mil

New Burn in System with "live "monitored IR

Space – Military Grade Design 1210 50V 1uF Part SEM and Images

Contraction of the second states of the	and the second		
	Contract Property of the	and the second	A second second
Mag = 150 × Aperture Size = 30.00 pm - EHT =:	20.00 kV Signal A = CZ BSD Date 9 Nov 2015	100 µm Mag = 150 X Apeniure Size = 3	0.00 µm EHT = 20.00 KV Signal A = CZ BIC

SIZE 1210	Dielectric Thickness	Cover Layer Thickness	Side Margin	End Margin
Average (microns) Specification	11.14	152.63	194.37	310.84
NASA >=	7.112	40.64	25.4	40.64
	PASS	PASS	PASS	PASS

Space – Military Grade design 1210 50V 1uF part SEM and Image for Grain Size Calulation

- 3.2.1.6 <u>Average Grain Size</u>: Capacitors shall be measured for average grain size as specified in paragraph 4.4.2.
- 3.2.2 <u>BME Capacitor Acceptance Criterion</u>. Capacitor samples, processed as specified in paragraphs 4.4.1 and 4.4.2 herein and meeting the requirements of paragraph 3.2.1 herein, shall meet Equation 1 as shown below:

$$F_t = 1 - R_t = 1 - \left[1 - \left(\frac{\bar{r}}{d}\right)^{\alpha}\right]^N < 0.00001$$
 Equation 1

Where \bar{r} is the measured average grain size, *d* is the average dielectric thickness, N is the total number of dielectric layers, $\alpha = 5$ for capacitors rated voltage > 100V and $\alpha=6$ for capacitors rated voltage ≤ 100 V.

Size 1210				r	N	d				
Inter- sections 5								rave/d		
samples	S Ave	Scale	Grain ave	r ave	Layers	Diel .Thick	d ave	ave	(r/d) power alpha	1-(r/d)power α
25	22.6	0.4	0.3539	0.3539	90	11.14	11.14	0.031776	0.0000000102938572657	0.99999999897061400000
22		alpha α								[1-(r/d)power α]powerN
20		6								0.999999907355292000000000000000
23										1- [[1-(r/d)power α]powerN]
23										0.00000092644707794242700000000
									NASA Spec. Compliant	TRUE

Material and Design Features for BME/PME X7R Space Grade <=100V

	Commercial	PME Space	BME Space
Materials	Multiple Ceramics, / Ni Electrodes . No Sn/Pb, Supply chain control ?	Single Ceramic / Pd/Ag Electrode . No Change	Single Ceramic / Ni Electrode . No change
Design Range	Layers ≤ 800 , Dielectric Thickness 1 – 15 um ,	Layer ≤ 200 , Dielectric Thickness ≥ 25 um	Layer ≤ 300 , Dielectric Thickness 7 um - 18 um
Margin Cover	Small as possible ≥ 50 um	Thickness ≥ 100 um , Large as possible	Thickness ≥ 100 um , Large as possible
Voltage	4 – 100 v	Greater than 25 v	Current Range 16 – 100 volts
QA	Random Sampling , 3 rd Party suppliers	As per ESCC , 100 % Burn in , PID control, PDA limits	As per ESCC , 100 % Burn in , PID control, PDA limits

New Products BME : Enabling Technology

- Dispersion Technology
- Zeta Mill

lity kinetic

Fundamental Studies of Dopants

- Dy, Y, Yb, Hf, Tb, Sm, Ho, Er, Gd
- Reliability, Breakdown voltage, K

- BT Coatings
- Analytical

Lin Stability

OTOD

High Temp EIS, Activation Energy, Slip Stability

BME Material Development Collaboration on STEM Analysis with Aerospace Corp

AEROSPACE EDS spectrum compares chemical composition of core (1) and shell (2) regions.

High Sensitivity / Sensitive but Unclassified (SBU) / Contains AVX Proprietary Information

Chemical Analysis (TEM/EDS) on Base metal Electrode Multilayer Ceramic Capacitors (BME MLCCs) manufactured by AVX Corp.

Talin Ayvazian, Zachary Lingley, Miles Brodie and Brendan Foran

Electronic Materials and Devices Section Physical Sciences Laboratory / ETG

March 10th, 2015 High Sensitivity/Contractor Proprietary Information [AVX Proprietary Information] This material is intended to be accessed only by AVX staff who are US persons and foreign persons, and is limited release only to those persons. The material contains AVX proprietary information, which enabled exists the Amarca Carlie meaningful analysis of the electron microscopy performed at Aerospace.

<u>200 nm</u>

STEM image of AVX_Lot 7

Material contributors to improving the HALT Performance for Hi CV range extension

- Lower Glass enabled 50V qualification @ 6.5um dielectric thickness
- 4 x Fold Improvement in HALT for Dielectric H formulation achieved by
- Increased Laydown
- Pre Milling the additives
- Adding/Increasing the rare earth %

AVX QPL 3009041 BME X7R Capacitor Range with Development ranges

Case	e Sizes	0	402			0603		(0805			1206			1210		1	812			2220	
Code	Value	16/25v	50v	100 v	16/25	v 50v	100v	16/25v	50v	100v	16/25v	50 v	100v	16/25v	50 v	100v	16/25v	50v	100 v	16/ 25	50v	100v
222	2.2nf																					
272	2.7nf																					
332	3.3nf																					
392	3.9nf																					
472	4.7nt																					
562	5.6nf																					
682	6.8nf																					
822	8.2nf																					
103	10n†																					
123	1201					-																
153	1501					_																
183	1801					_																
223	2201					_																
2/2	2/111 33n t					_																
505	20nf					-																
473	47nf					-																
563	56nf																					
683	58n f					-																
823	82n1																					
104	100n f																					
124	120n f																					
154	150n†																					
184	180n f																					
224	22.0n1																					
274	270n f																					
334	330n f																					
394	390n f																					
474	470n f																					
564	560 n f																					
684	680n f																					
824	820n1																					
105	101																					
125	1.201					-																
155	1.507																					
185	1,80T					_																
220	2.201					_																
275	2.701 3.30f					-																
305	3.001					-																
175	4 7uf					-																
565	5.6uf					-																
685	6.8ut					-																
825	8.2uf																					
106	10uf	Key																				
126	12uf		In dev	velopn	nent																1000	
156	15uf		in pro	ductio	n																dia	
186	18u†																					
226	22u†																					

KYOCERA GROUP COMPAN

http://www.avx.com

U.S.A. NASA and MIL Approvals

NASA BME Spec released S-311-P-838 June 2015. Approved April 2016 Data pack includes - Cross-section, Grain Size, THB @rated Voltage etc NASA QPLD listing completed Feb 2016.

- **New Mil Prf Thin Spec 32535** released Sept 2015. Approval Estimated June 2017
- Includes both BME and PME technology .
- Coleraine and Czech facilities have "Mil" audit completed May 2016.
- Manufacturing of qualification lots underway.
- This will include 0402 and 2220 sizes with a max cap of 22uF.
- Incudes Low Inductance capacitors 0306, 0508
- Expect Mil Qualification to be completed through 1st half 2017
- Need to complete the long term testing 4,000 hr life data
- Gold termination parts on line for 12065C105K for USA customers.
- 2,000 hrs life tested completed and Passed Feb 2016.
- Life test 2,000hr data completed and Passed Feb 2016
- Plan to qualify Gold range with Mil and ESCC ranges .

Conclusion

- AVX's Space BME X7R capacitors have clear differences set out from their Materials, Design, Processing and Testing than other BME, commercial, products to meet the ESCC/NASA/Mil Standards
- In addition, AVX has carried out extensive reliability testing
 - EPPL, ESCC 3009041 , NASA S311P838
 - Long term life testing 10,000 Hrs , 2 x RV @ 125 Deg C
 - HALT and Weibul Analysis
 - SEM and STEM analysis
- The Space BME range is under qualification testing for the Mil Prf 32535, including 4000 hrs life testing. Est June 2017

Under evaluation is a range extension 0402 – 2220
e.g. 2220 50 volt 10 uf , 25 volt 22 uf .

ESCC Evaluation Test Program 2008-2013

Base Metal Electrode Ceramic Capacitors studies (Contract No. 22484/09/NL/CP)

ESCC Approved AVX Ceramic Capacitor Ranges								
AVX App Series	Ceramic Capacitor Type	Series Type						
ESCC 3001030	Cap Ceramic fixed Type II	CH/CV Stacked						
ESCC 3001034	Cap Ceramic fixed Type II High Volt ,1 Kv – 5 Kv	CH/CV Stacked						
ESCC 3009034	Cap Ceramic fixed Type II High Volt , 1 Kv – 3 K v	1812 - 1825						
ESCC 3009	TPC Cap Ceramic Type I & II, 25 - 200 volt	0805 - 2220						
ESCC 3009041	Cap Ceramic Type II,	0603 - 1812						

AVX's NASA, European Space Agency and CECC Approved Ceramic Capacitor Products

Michael Conway Product Manager <u>michael.conway@eur.avx.com</u>

Thank you